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Symmetry Codes and Their Invariant Subcodes

Abstract |

We deline and study the invariant subcodes of the symmetry
codes in order to be able to determine the algebraic properties of

these codes. An infinite family of self-orthogonal rate 1/2 codes

over GF(3), called symmetry codes, were constructed in [3]. A
(2 + Z, q + 1) symmetry code , denoted by C(q), ~xists whenever q
is an odd prime powe: = -1, (mod 3). The group of monomial transfor-

mations leaving a symmetry code invariant is denoted by G(q). 1In this f

paper we construct two subcodes of C(q) denoted by Rc(q) and Rp(q).
Every vector in Ro(q) is invariant under a monomial transformation 7

in G(q) of odd order s where s divides (q + 1). Also R“(q) is invariant
under T but not vector-wise. The dimensions of Ro(q) and R“(q) are de-

termined and relations between these subcodes are given. An isomorphism
2at2

3 s

shown that the image of Ro(q) is a self-orthogonal subspace of W. The

is constructed between Ro(q) and a subspace of W=V It is
isomorphic images of RU(17) (under an o>rder 3 monomial) and R0(29)
(under an order 5 monomial) are both denonstrated to be equivalent to

the (12, 6) Golay ccde.

Dr., Vera Pless
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I. Introduction.

This paper defines and studies the invariant subcodes of the

symmetry codes which were originally defined in {3]. The purpose of

this study is the illucidation of properties of these subcodes in such
a manner that these properties can be applied in determiring character-
istics of the symmetry code itself. For example, maximum length vec-
tors in C(17) and C(29) can be determined from known maximum length
vectors in the Golay cede G(5). The minimum weights are knewn for the
first five syrmetry codes. Estimates of the minimum weights of the
larger symmetry codes have been obtained by locating a vector of weight
21 in R0(41) (under an order 7 monomial) aid a vector of weight 27 in
RG(SB)ﬂ(under an order 3 monomial). An (n, k) error correcting code
over GF(3) is a k-dimensional subspace of V3n = V. The weight of a
vector x, denoted by w(x), is the number of non-zero components it has.
Symmetry codes are an infinite family of (2q + 2, a + 1) codes over
GF(3) where q is an odd prime power = -1 (mod 3). Each code is given
in terms of a basis [I, Sq] where I is the q x q identity matrix and
Sq is the matrix described below.

We consider the elements of GF(q) to be ordered in some fixed way,
and with this ordering we label the first q + 1 coordinates with the
elements of GF(q)U {®]} with « taken as the first coordinate. We label

the second q + 1 coordinates by the same sequence of elements of




GF(q)U{“} with dashes on them to distinguish them from the first q + !

coordinate labels. When q = p is a prime, for convenience we use the
ordering »,0,1, ... , p-1 (and hence also «', 0', 1' cee 5 (p-1)' for

the right side). by definition, Sq is the (¢ + ') x (@ + 1) matrix

(si' jl)’ i, j in GF(q)U{m}’ such that Sml m' = 0 and for i' ’ j' # m"
By i Evib, Set 41 = 1, and Siv, 4 = x (j-1) where x (0) = 0, x
(a quadratic residue) = 1, (a non-residue) = -1. We refer to the code

generated by [I, Sq] as C(q).
As a concrete example we write the basis for C(5) below.

S0l 2 8 & @\ ot Jt P9I gt g

10 0 0 0 0 O 1 1 1 [ R |

00 0 0 0 1 1 I =1 =1; 91 "0

C(5) is a (12, 6) code and it is equivalent to the Golay code [2].

In [4) it was shown that each symmetry code is self orthogonal. The
transformations on V which preserve the weights of all vectors are the
monomial transformations. A monomial transformation can be viewed as a
permutation of the coordinate indices of the vectors in V (the same per-
mutation for each vector) coupled with multiplying some (or none) of the
coordinates by minus one. The set of monomial transformations which

send all the vectors in C(q) onto vectors in C(q) form a group denoted by

G(q). In [4] it was shown that G(q) contains PGLz(q).




In section I1 of this paper we construct two subcodes of C(q)

denoted by Rc(q) and Rp(q). Every vector in Rc(q) is invariant under a ‘
monomial transformation T in G(q).of odd order s where s divides q + 1. |
Also Ru(q) is invariant under't but net vector-wise invariant. The
dimensions of Rc(q) and Ru(q) are determined and relations between thece
subcodes are given. In section I1I an isomorphism it constructed between
2g+2
Ro(q) and a subspace of W = V3 s . 1t is shown that the image of
Ro(q) is a self-orthogonal subspace of W. 1In section IV the isomorphic

images of R0(17) (o(1) = 3) and R0(29) (o (1) = 5), are both demonstrated

to be equivalent to the (12, 6) Golay code.

II. 1In this section we construct two subcodes of C(q), Rc(q) and R“(q)
with the following properties. Every vector in Ro(q) is invariant under
a monomiai transformationT in G(q) where the order of 7t is an odd number
s dividing q + 1. Further, Ru(q) is also invariant under but not vector-
wise invariant. The dimensions of R0 and R“ are determined, and relations
between them are given.

In [4] it was shown that the mapping sending a monomial transformation
v in G(q) onto the nermutation T it induces on the coordinate indices is a
homomorphism of a sibgroup of G(q) onto PGLZ(q) whose kernel has order 2.
For the rest of this paper T denotes a monomial transformation in G(q) of
odd order s where s divides (q + 1) such that7 is in PGLz(q) and the order

of 1 equals the order of T .

Lemma 1. 1f s is an odd number dividing (q + 1), then there exists a

transformation T in G(q) or order s. Further T is in PGLz(q).




Proof: By [1l] it is known that PGLz(q) contains a cyclic subgroup of

order (9—%—l). Hence this subgroup contains an element T of order s
when s is any odd number dividing (q + 1). The monomial 7 in G(q) which
maps into T by the homomorphism described above is either of order s or
2s. If it is of order s we are finished. If 7 is of order 2s then 72
is of order s, ?2 is also of order s (since s is odd), T is in PGLq(q)
and the lemma is demonstrated.

The subcodes Ro(q) and Ru(q) are the ranges of two linear transforma-

tions ¢ and p defined for x in C(q) as follows.

XO = X4+ XT+ ... + XTS-l

L4

X|L = X = XT
Ever. though ¢ and i are linear transformations, they are not monomial

rransformations; they are useful in obtaining information about 1. Let

Ko(q) denote the kernel of ¢ and Ku(q) the kernel of .

Theorem 1, Ro(q), Rp(q), Ko(q), Kp(q) are subcodes of C(q) such that
1) Ro(q) is contained in K“(q) and Ru(q) is contained in Ko(q), and
;-b 2) T leaves Ru(q) invariant and T leaves every vector in Ro(q)

invariant.

Proof: It is clear that R_(q), Ru(q), Ko(q) are subcodes since they

are vector subspaces contained in C(q). If xg is in Ro(q) then (xg)p =

s-1 - 2 -
(x+ xT+ ... + x7 TSR I B . P x75 1) CI(CTa i S A P XTS 1

+ x) = 0 so that Ro(q) is contained in Ku(q). Similarly Rp(q) is

F- contained in Ko(q). If %o is in Ro(q), then (x0)1T = (X + X1+ ... + xt° )T

2 s-1 :
XT A XT | # e + X = X0 and we see that T leaves every vector in

2
| Ro(q) invariant. Since (xu)T = XT - X7, T leaves Rp(q) invariant and

the theorem is proved.




Remark : When s is divisible by 3, R (q) is contained in Ko(q).

Proof: If y is in Ro(q), y=X0 =X+ XT+ ... + x1°" ", Hence yo =

(x + xT + ... XTS-l)O =sy = 0 (mod 3). '

Lemma 2. T is a product of disjoint cycles of length s. Further, if 1
(il’ «ee, i ) is such an s-cycde for the lett coordinate indieces of V, then
]

(11', cee is') is sueh an s-aycle for the right coordinate indices of V.

Proof: By their construction {4] the transformations in PGLz(q) act on
the leit coordinate indices (and simultaneously on the rig. . coordinate
indices) as transformations on the projective line. Since s is an odd
number which divides q + 1, 7 is either completely a product of disjoint
cycles of length s or a product of disjoint cycles of length s with ks
fixed points. But a projective transformation with three fixed points
is the identity. Hence T can have at most two fixed points on each side
of coordinate indices. Since s divides q + 1, the number of left coordi-
nate indices (and the number of right coordinate indices), this it only
possible for k = 1 ard s = 2, The lemma follows from the fact that s is an
odd number.

We let J be a set of left coordinate indices with the property that

J contains exactly one index from each of these s cycles. Note that

la| = @+ 1)

S

In order to determine the dimension of Ro(q) and Ru(q) we introduce
the following terminology. We let the vectors in the basis (I, Sq] be

denoted by (ei, c(ei)) where e is the iEE row of I and c(ei)‘is the iEE

row of S .,
q




she

Theorem 2. dim Ro(q) = (S—E—l) and dim Ru(q) = (94t—lZ§§-:—l) . |4

s-1

+ 1) |

Proof: Consider the set of (g =

vectors {(e, + e.T+ ...+ e,r
] ] ]
s-1 :
c(ej) # c(ej)w * sy # C(ej)T )} for Jed. Since the order of T equals
the order of T, ej#f.e, 1, 12155 -1, so that (e teTd L+

3

ej Ts-l) # 0 fcc each j ¢ J. Hence by the definition of J, these vectors

ire linearly independent. Clearly they span Ro(q), and it thus follows

that dim Ro(q) = |J| = g—z"l . Similarly { (ej'rk - eka+1), (c(ei)'rk -
kt1 ' '
c(ej)T e )} for jeJ, k = 0, ... » 8§ = 2 is a basis of Ru(q). Hence dim
@+ L(s - 1)
s

Ru(q) =

Remark: When T has even order (# 2) which divides (S_E_l)’ all the results
of this paper hold when the order of T equals the order of 7. Whep
the order of T equals twice the order of T, chen it is possible that

Theorem 2 does not hold since the basis vaectors described above caa be

zZero,
i = d = c
Corollary Rc(q) Ku(q) an Ru(q) Ko(q)
Proof: By Theorem 1, Ru(q) is contained in Ko(q) and RU(q) is contaired

in Ku(q). In general, dim Ru(q) + dim KM(Q) =g+ 1 = dim Ko(q) + dim Ro(q).
By Theorem 2, dim Rb(q) = (Shi_l) and diwu Ru(q) = (ﬂ4t—l2$§—:—l). Hence

s

di- nu(q) = dim Ko(q) and dim Ro(q) = dim Ku(q) anl the corollary is demon-

strated.

Note that since 3 divides (q + 1) for every q = -1(mod 3), every symmetry

code has a monomial transformation of o>rder 3 leaving it invariant,

III. The isomorphic image of Ro'

In this section we construct a linear transformatior ¢ from V onto

2q+2
W= V3 s where s is again an odd number dividing q + 1 with the following




properties. The dimension cf Q(Ro) equals the dimension of Ko the

weight of ¢@(x) for x in RO is the weight of x divided by s, and (R )
o

is a self-orthogonal subspace of W.

In order to do :his we let J be as in section II, and let J' be the
elem2nts in J with dashes on them. Note that J UJ' contains Zi%tll
elements. We consider the elements in J to have the same orderiaig they
had in GF(q)U {»}. With this ordering we label the left half of the
cocrdinate indices in W with the elements from J, and the right half with
the elements from J'. We denote the unit vectors in W by Zj, jria'Jd
and }SJ.', g am &Y
Lemma 3. If xT = x, then the components of x on a cycle of T are either
all zero or all non-zero. Further, if xT = x and yT = y, then on the
cycles of T on which the components of both x and y are nor-zero, the com-
ponents of x equal plus or minus the components of y.

Proof: lLet (il,...,is) be the coordinate indices of a cycle of T. Let

X, be the ij£h component of x. I1f xT = x, then all the components of x
j
on this cycle are determined by x; and T. I1f yr = y also, then the
1

components of x on this cycle equal the components of y on this cycle of s

Yz If ae WY the components of x on this cycle are the negatives
o | 1 1
of the components of y. Since these are the only possibilities, the lemma

is proved.

2g+2
8
Theorem 3. There is a linear transformation ¢ from V onto W = Vg

such that 1) dim w(Ro(q)) = dim Ro(q) = ﬁﬂ_%_lL , and

2) w@x)) = HEL

1




Proof: We let e, and ei', ieGF(q) U{»} denote the unit vectors in V.

We define ¥ on these unit vectors as follows.

If jed, w(ej) = Ej. If idd, ¢(e,) = 0.

Lt 60 Gpiey Tt If i'¢3', ¢(e') = 0.

Define ¢ on the rest of V linearly. Clearly ¢ is a linear transformation
from V onto W.

Recall that {(e. + e.T+ ...+ e 157}, ele,) + B )T % ... + a@)i D)

J J J J ] ]

jeJ is a basis of Ro(q). Since ¢ maps these vectors onto linearly inde-
pendent vectors, dim (P(Ro(q)) = dim Rc(q) = ﬁﬂ%ll by Theorem 2.

Theorem 1 tells us that xT = x for all x in Ro(q). By Lemma 3 we
know that the components of x on a cycle of T are either all zero or all
non-zero. Since ¢ projects on precisely one component from each

s ~cycle of ;, wiop (x)) = wir) 9

s

It was proven in (4] that C(q) is a self-orthogonal subspace of V so
that Ro(q) 1s certainly a self-orthogonal subspace of V. Even though ¢
does not preserve the property of self-orthogonality, we can prove that

Q(Ro(q)) is a self-orthogonal suhspace of W.

Theorem 4. w(Rc(q)) is a self-orthogonal subspace of W.
Proof: Let x and y be vectors in W such that x = (al,...,a2 +2 ) and
)
y = (Bl,...,BZ 42 ). Then the inner product of x and y, denoted by (x,y), is
s
2q+2
)
:E: aiﬂi (med 3). As is usual, x and y are orthogonal to each other

i=1

’




if (x,y) = 0. In order to prove Theorem 4 we need to show that (x,y) =0

for all x,y in @(Ro(q)) (x can also .qual y). 1In order to prove this,

we introduce the inner product of x and y over the integers, denoted by

2q+2 !

3w

[x,y], where [x,y] equals aiBi by definition. We lefine [x,y] in
1

Nr

a similar fashion for x and y in V.
The proof of Theorem 4 is divided into two cases. The first case is

3 does not divide s. Tf x and y e¢re in Ro(q), then x = x_ + x_7 + +

% %EE aes
L Y + +ycoThf ~ and y. in C(q). B
1 ana y = y.l. yl'T see le or some 1 n yl in q). y

Lemma 3, all the elements in Ro(q) which are not zero on a particular cycle
of T have the same or opposite components on that cycle. Hence [x,y] = rs
where r is the number of s-cycles of T (in both the left and right coordi-
nates) in which both x and y have non-zero components. Since (x,y) = 0, 3

divides rs, but by assumption 3 does not divide s so that 3 divides r. By

the definition of ¢, [¢(x), ¢(y)] = r so that (p(x), ©(y)) = 0 for all x,y

in Rc(q). Hence @(Rc(q)) is self-orthogonal in this situation. We now

consider the case that s = 3j, i.e., T3j = 1. We let x and y be in R (q),
foj
3j-1
b

and we have x = X, + X.T + ... + X.T 1=t

1 1 1
X ¥y in C(q). Then

3j-1 3i-1 3i-1

T i i < 35-1 i
[x,y] = [x,, vy, 7] + EU [T,y 7T ] 4+ oc. + [x.7T J , Y. 7]
iéU 1 1 i& IR %0 1 1
3j-1 3j-1 3j-1
i i % i+1 . i i+3j-
I R B R B
i:o i=0 %0

by rearranging terms. Now [u,v] = [UTi, VTl] for all u and v in V




<10

since Ti is a monomial transformation over GF(3). Hence [x,y] = 3j[x1,

33-1,

. . e 2 :
yl] + 3jlx ]+ ...+ 3j[x1,y1T Sinze x1 and YT (i=0,..,33j-1)

%4
are all in C(q) which is self-orthogonal, each [xl, lei] is divisible
by 3 sc that [x,y] = 9r for some r. Each cycle of T is a 3j-cycle, aud
by the definition of ¢, ¢ projects onto one coordinate from each 3j-cycle

so that [@(x), ©(y)] = 3r. Hence (p(x), ¢(y)) = 0, and ¢(Ro(q)) is a

self-orthogonal subspace of W for this case also.

IV. TInvariant subcodes of C(17) and C(29) are isomorphic to the Golay code.

In this section we apply these ideas to C(17) and C(29). The T for
C(17) has order 3 and the T for C(29) has order 5. We describe these two
monomial transformations explicitly, and exhibit bases for Rc(17) and
QR _(17)).

In order to exhibit these monomial transformations we introduce the
following cgnvention. We let EZIT times a column index mean that we
multiply the column by x(i) where x(i) = 1 for i a quadratic recidue, and
¥(i) = -1 for i a non-residue. This convention is used in order to avoid
confusion with negatives in GF(17).

We can represent T as a monomial transformation on the columns of

V as follows.

T(®) = 0, T(16) = w T(1) = X(FD) (po), 1 4w, 16;

T(e') =0, T(16') = r(1') = XG D (F2), i' 4, 16"

The generators of the subgroup of G(17) which is isomorphic to PGL2(17)

are given in (4, p. 131]. It is easy to verify that t is u product of two




—

'«

of these generators so that T is in G(17). A straightforward check shows

that T has order J. If we rearrange the columns of V to correspond to

the cycles of ?, the following is a basis of R°(17).

@016 1815 2117 3410 5 149 61213 ' 0' 16" 1' 8' 15°'
f f

340100 %' 140 90 (1)

I’11 l] - I ] I -1 -1 -1 E -ll-l 1

+ ¢ — ]

I
[}

{ bi1 1) | ‘ 1

T
1 -11] 1 1

4

1

-1

1 1
| 1

1
-1 |14
1

—_ e fe = [~ [~

7
1l 1
i _ch
1]
1] -1
1

T N O O K
—_— = = = |= |~

1 -1-1 .

1

1 )

‘11 -1 11 j-1-1
-1 <1 |-1-1

-l -1 ] 11

. .
el Lt Lol Laed

1
1
-1
1
1

l -1 1 ey a1t

i
1
3
l

From this we get the following basis for ¢(Ro(l7)) by choosing
J= {=,1,2,3,5,6].

% 1 Z 3 S B e 1! 2! 9 5! g°
1 -1 L l=llel
1 11 -1-11

1 1 11 11
1 I =l il =1 -1
1 -1-11 11
1. = .1 =,

It is known (4] that the minimum weight of C(17) is 18, so that the
minimum weight of w(Ro(17)) is 6. It follows from the theorem in (2]
that @(Ro(l7)) is equivalent to the Golay (12, 6) code over GF(3).

A monomial transformation T of order 5 in G(29) is given by the
following.

T(®) = 0, T(26) = ©; T(i) = x(i+5) (i—i%), i4e, 2,

28

i'+5

As in the previous case it can be verified that 7 is a product of

T(@') = 0', T(2') =oo'; 7(i') = x(1'+5)( ), i' # @', 24,




-12-

generators of the subgroup of G(25, which is isomorphic to PGL2(29).
Given 1, a basis of Ro(29) can be computed similar to the basis of
R0(17). The minimum weight in C(29) is 18 and since the weight of
every vector in R0(29) is divisible by 5, the minimum weight of
R0(29) must be at least 30. It is exactlv 30 since the basis vectors
have weight 30. Hence the minimum weight of ¢(Rc(29)) is 6. 1t then
follows as above that ¢(Ro(29)) is equivalent to the Golay Code.

I wish to thank Jean-Marie Goethals for pointing out to me that
the results of this paper are applicable to a wider class of monomials

than I originally stated.
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